现代神经生物学 Modern Neurobiology

Notes on Modern Neurobiology. Reference: Principles of Neurobiology. Liqun Luo.
This first version draft will be polished.
1 Electrical signals in neurons
Ion Movement
-
diffusion: Ficks law
-
electrical drift: Ohm’s law
Equilibrium potential
-
电化学平衡:扩散与电迁移达到平衡
-
离子主要分布在膜上?且很少量?
-
平衡电位:能斯特电位
Ion gradient maintenance
Electrogenic pumps. 生电泵:出去的阳离子多,电位更负
- Na/K-ATPase pump
- Ca-ATPase pump
- Na-Ca cotransporter
- K-Cl cotransporter
Movement of ions across biological membrane
神经元是漏电电容器
神经元的等效电路
I–V曲线
-
双脂膜 (lipid bilayer) +离子通道
-
惯例:外向电流——正电荷离开细胞 positive;内向电流——正电荷进入细胞,negative
-
RC 并联模型
-
加入电池:离子通道 (离子泵~俩电池并联)
-
平行电导模型:多个离子通道
-
输入电阻
-
整流特性 membrane rectification
- slope & chord conductances
Hodgkin-Huxley Equation
- HH拟合出4次方,其实对应4个亚单位
- 在电流刺激后,Na、K 离子通道的电导是改变的
Propagation of AP in a passive axon
动作电位的轴向传导
极化状态:内负外正
- 轴突模型:电报方程
- 传播速度;轴突粗细
- 跳跃传导
Firing patterns of neurons
pass.
- Q: why delayed firing?
2 Synapse
重点:release probality 怎么来的,quantal size, short term synaptic plasticity
-
不同离子的平衡电位与膜电位
-
GABA和甘氨酸产生的突触电位一般会产生超极化
-
excitation (~depolarization) & inhibition (~hyperpolarization)
-
current-clamp & voltage-clamp
- 电流钳反映生理状况
- 生理状况下膜电压的变化
- 电压钳是比较专业的研究离子通道的方法
- 离子通道:电压依赖性
- 电流钳会引起正反馈样的膜电压变化(瀑布式)
- 补偿电流钳制电压,电流反映特定电压下离子通道的变化
- depolarization
- 电流钳和电压得到的电流曲线是相反的?
- 电流钳反映生理状况
-
membrane potential
- 静息电位:K离子通道开放
- 动作电位:Na离子通道开放
- 突触电位:IPSP,EPSP
-
囊泡释放:Ca离子通道开放
History
-
证明化学突触:Frog heart perfusion 蛙心灌流
-
Stephen William Kuffler: studies of neuromuscular junctions (NMJ)
- Synaptic delay against electrical propagation
- synaptic fatigue following high-frequency stimulation
- sensitive to temperature, etc.
-
Kaz: Quantal Theory 神经递质释放的量子学说
- 乙酰胆碱要么不释放,要么释放一个固定的量 (quantum release)
- release probability , quantal size
- 突触电位 ~ quantal size
-
John Eccles: 研究细胞内刺激引起的突触传递,证明了脊髓(中枢)的突触传递是化学传递,建立了抑制性突触传递的概念
- Excitatory postsynaptic potential/current (EPSP/EPSC)
- Inhibitory postsynaptic potential/current (IPSP/IPSC)
-
Comparison of NMJ and CNS synapses
- NMJ: 大突触,一对一突触传递
- CNS: 主要作用是整合 (integration),突触比较小
Morphological types of synapses in CNS
-
Gray type I: 很厚的突触后膜
- excitatory, glutamate
- round vesicle
-
type II
-
inhibitory, GABA or Gly
-
flattered vesicle
-
Short-term synaptic plasticity
-
Presynaptic mechanism 衡量突触前囊泡释放的指标
-
Examine: paired pulse –> facilitation/depression
-
facilitation:low release probability,第一次刺激时Ca离子量少;第二次Ca离子通道进一步开放,Ca离子浓度更高,release probability 提高
-
depression: high replease probality,第一次刺激时释放啦大部分囊泡,囊泡需要再循环,第二次刺激产生的突触后电位会变小
-
Facilitation–>depression: 药物处理抑制了突触兴奋性
Clearance of extracellular neurotransmitters
- Glu transporter 转运体
- 谷氨酸是细胞代谢中间产物,细胞内Glu (m mol) 比细胞外 (u mol) 高很多
- 电梯度和化学梯度都阻碍Glu转运入细胞内
- 转运方式:共转运
- 缺氧状态可能会释放出Glu,造成神经损伤
- Astrocyte 星型胶质细胞:The Glutamate-Glutamine Cycle
- Glu –> Astrocyte –> Glutamine (谷氨酰胺) –> 转运出,被细胞再利用♻️
- Glu –> Glutamine 不耗能,分解可以产生ATP
- Glu –> neuron 不耗能,顺梯度共转运?(跟着离子泵进入?)
- Glu –> Astrocyte (耗能)也是靠转运体,星胶的受体多,很多K离子通道,非兴奋性
Approaches to study exo- and endocytosis neurotransmitters
- Fluorescent imaging (FM–143)
- 形成囊泡后把 FM–143 洗掉,只剩下包裹在囊泡内的荧光分子
- Capacitance recording
- 膜电容~细胞膜表面积
- 通常用在内分泌细胞
- Electrochemical detection
- 电极上涂上化学物质,记录电化学反应引起的电信号改变
Postsynaptic receptors
- 离子通道型受体(配体门控型通道, ligand gated)
- 经典电位
- G–蛋白偶联受体
- “慢”电位,GPCR调控离子通道产生
Electrical synapses: gap–juntction
Molecular mechanisms of neurotransmission
-
synaptic vesicle proteins
- 高度特化,保证极短时间内(1ms)大量囊泡释放
-
general fusion mechanism
- Rab3: docking
- SNAREs: 囊泡融合的核心分子
- NSF, SNAP: disassemble the SNAREs complex
- Munc–18: 保护机制—prevent formation of SNAREs complex
-
Unique fusion mechanism
- synaptotagmin 突触结合蛋白,感应钙离子
- etc.
-
Models of exo- and endocytosis 外吞/内吞作用
-
kiss and stay
-
bulk endocytosis
-
distinct vesicle retrieval pathways in excitatory and inhibitory presynaptic terminals
- GABAergic—bulk endocytosis
- Glutamatergic
-
endosome
-
-
十几年的工作:Presynaptic Endosomal Cathepsin D Regulates the Biogenesis of GABAergic Synaptic Vesicles
3 Trans-membrane Signal Transduction and GPCR in Neurotransmission
跨膜信号转导和GPCR介导的信号转导
Forms of intercellular signaling
细胞间通信方式
-
Contact–dependent
- e.g., Notch signaling pathway
-
Paracrine
- 旁分泌, 信号分子化学扩散
-
Synaptic
-
Endocrine
- 内分泌
Components of signaling pathway
- first messages (chemical stimulus)
- 第一信使:细胞外信号分子
- Endocrine hormones: GH
- Neurotransmitters: Ach, GABA
- Growth factors/cytokines: ILs, IFN, FGF, EGF
- Receptors/ligand
- GPCR
- Receptor enzymes: EGFR
- Ion channels: 5–HT, nAChR
- secondary messages
- signal networking
- responses
G protein
-
G protein: Guanine nucleotide-binding proteins
-
small G protein: Ras superfamily
- Ras: 和癌症相关, 是原癌基因 (function: cell proliferation)
- Ras/MAPK pathway: an essential role for cell physiology
-
The GTPase cycle
GPCR

-
命名问题:GPCR can interact with non-G proteins
-
Architecture of GPCRs
- Heptahelical:跨膜螺旋结构
- 7TM (大多为7次跨膜,alpha螺旋, serpentine)
- Glycoproteins 糖蛋白,糖基化
- Heptahelical:跨膜螺旋结构
-
Physiological roles of GPCR
- Rhodopsin: first cloned GPCR, visual sense
- Smell sense: olfactory receptors
- behavioral and mood regulation: many neurotransmitters’ receptor
- regulation of immune system activity and inflammation: histamine
- autonomic nervous system transmission: blood pressure, heart rate, and digestive processes
- 自主神经系统(英语:autonomic nervous system,缩写为ANS),又称植物神经系统(vegetative nervous system,VNS),与躯体神经系统共同组成脊椎动物的周围神经系统。 所谓“自律(自主)”,是因为未受训练的人无法靠意识控制该部分神经的活动。
- etc.
-
Generalizations of GPCR
- highly versatile
- involved in short-term regulation (seconds to hours)
- mediate slower “modulatory” effects in neurons
- 调制性反应,好比润滑剂
-
Subunits
-
Classification
- Class I—VI
- 膜外:N端 (–NH)
- 膜内:C端 (–COOH)
GPCR signaling
-
modulation of GPCR/G-protein signaling by accessory proteins
- GPCR-interacting proteins (GIPs)
- RGS proteins: regulators of G protein signaling
- AGS proteins: activator of G protein signaling
-
Desensitization (脱敏化, 不再感受膜外信号分子作用) & recyling of GPCR
Ligand-stimulated phosphorylation of GPCR by associated GRK is probably a general mechanism of desensitization of GPCRs.
GPCR functions in neurotransmission
GPCR signaling is finely tuned to optimize signal strength, duration, and location.
Neurotransmitter receptors
-
Ligand-gated ion channels (LGICs,配体门控离子通道受体)
- Nicotinic acetylcholine (nAChR) receptor
- Ionotropic glutamate receptors
- NMDA receptor (Ca)
- AMPA receptor (Na)
- Glycine receptor (GlyR)
- GABAA receptor
- Serotonin receptor (5–HT3)
- ATP–gated channels (P2X)
-
Transporters (转运体)
- 神经递质回收
- Glutamate/aspartate transporters (EEATs and VGLUTs)
- GABA transporters (GATs)
- Glycine transporters (GlyTs)
- Monoamine transporters (DAT, NET, SERT, VMAT)
- DAT: 多巴胺转运体
- Adenosine transporters (ENTs)
- Vesicular acetylcholine transporter (VAChT)
- acetylcholine:乙酰胆碱
-
G protein-coupled neurotransmitter receptors
GPCRs are generally thought to serve neuromodulatory roles in neurotransmission, and achieve their effects much more slowly than LGICs.
- 神经肽受体大体都是GPCR
- 调控速度相比离子通道型受体慢,属于 Metabotropic Receptors
Functionality
Neuromodulatory roles in neurotransmission:
-
modulation of gene expression to modulate neuroplasticity
-
presynaptically
-
postsynaptically
-
dependence
- Anatomical locations, Presynaptic/postsynaptic localization
- Subunits activated
-
GPCR–mediated neuromodulation
-
GPCR function in neuroplasticity
-
Associative Learning: Walters E T, Carew T J, Kandel E R. Associative learning in Aplysia: Evidence for conditioned fear in an invertebrate[J]. Science, 1981, 211(4481): 504-506.
-
Long-term depression (LTD)
-
Parallel fiber, climbing fiber, Purkinje cell
-
metabotropic glutamate receptor –> G-Protein –> DAG (activated)
-
同时发生:climbing fiber 兴奋,Ca通道打开
-
Ca+DAG–>PKC (activated)
-
-
4 Glutamate and GABA receptor
阅读:http://www.bristol.ac.uk/synaptic/receptors/ampar/
Glutamate Receptor
阳离子通道,兴奋性受体,开放后介导膜的去极化
Glutamate
- The major excitatory neurotransmitter in the mammalian CNS, acting through both ligand-gated ion channels (ionotropic 离子型受体) and G-protein-coupled receptors (metabotropic 代谢型受体).
- Glutamate is stored in synaptic vesicles and released by Ca2+ dependent exocytosis.
- 谷氨酸代谢
- 合成:谷氨酰胺+谷氨酸合成酶
- 与GABA可以相互转化
1. AMPA receptor
AMPA和NMDA之间的主要区别在于,AMPA受体中仅发生钠和钾的流入 (注: 不绝对,exists Ca permeable AMPA receptors),而NMDA受体中,除了钠和钾的流入以外,还发生钙的流入。 此外,AMPA受体在核心中不包含镁离子块,而NMDA在核心中包含镁离子块。
-
Non-NMDA-type
-
配体是谷氨酸,结合点在胞外
-
四聚体:以来四个亚基,和细胞膜上的一些辅助亚基有互作
-
三次半跨膜
-
Q/R剪切:决定能否透 Ca
-
胞内有很多调控和修饰位点
-
LTP的产生:长时间增强(突触可塑性)
- 依赖于AMPA受体
- Glutamates bind to AMPAs and NMDARs, causing AMPAs to open and Na+ flows into the postsynaptic cell, resulting to a depolarization
-
AMPA trafficking pathway
-
AMPA interacting protein
- NSF: 促进膜融合(上膜)
-
AMPA pharmacology
- agonists 激动剂
- antagonists 拮抗剂
2. NMDA receptor
NMDA受体的结合,会导致离子通道非选择性地开启,使阳离子通过,进而使平衡电位改变至接近0mV。NMDA受体进行活化,必须依赖电压,这会导致离子通道会阻挡细胞外的Mg2+与Zn2+离子通过,并允许Na+离子与少量Ca2+离子流入细胞,以及使K +离子流出细胞,并保持电压的依赖性。功能性的NMDA受体必须含有NR1亚单位,多个NR2亚单位与NR1共同形成四聚体或五聚体。NR1是构成离子通道的基本亚单位;NR2是调节亚单位,不同NR2组成的NMDA受体表现出不同的脑内分布与生理学特性。
-
NMDA: N-methyl-D-aspartate N-甲基-D-天冬氨酸
-
只有异聚体 (hetero-oligometric protein) 没有同聚体
-
Has critical rule in Ca flux
-
Subunits
-
NR1: 3个外显子,可形成8个剪切变体
-
NR2:
-
在发育过程中的数量不同
- GluN2A和GluN2B在发育过程中的switch
-
脱敏时间不同
-
开放概率不同
-
-
Distinction :
- 需要两个激动剂激活—glutamate and glycine
- 开放后被 Mg离子 block,得等膜电位去极化到-40mv左右,才能把Mg离子赶出去
- 和AMPA联动
-
Topology
GABA receptor: GABA
aminobutyric,通过氯离子的阴离子通道,介导超极化
-
五聚体, 四次跨膜
-
ligand-gated ion channels
-
multiple subunits
-
门控特征:持续开闭
-
subunits composition differs by locations (synaptic/extrasynaptic)
-
shunting inhibition
- 近胞体侧的GABA激活后分流出传导过来的阳离子(氯离子内流,使阳离子外流),抑制动作电位
-
phasic inhibition (突触内) / tonic inhibition (突触外)
-
GABA interaction proteins
- Gephyrin: 抑制性突触特有
-
在发育阶段早期,胞内氯离子多,GABA受体的激活导致氯离子外流,因此会介导神经元的兴奋
- 氯离子转运体表达的原因
推荐阅读
[1] Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors (Nature reviews,2005)
[2] Regulation of AMPA receptor trafficking and synaptic plasticity (Current Opinion in Neurobiology,2011)
[3] Molecular basis of NMDA receptor functional diversity (European Journal of Neuroscience, 2011)
5 Calcium Signaling
-
胞内钙~0.0001 mMol,胞外钙~1.5mMol,非常敏感
-
动作电位–>电压依赖钙离子通道
-
TRP通道:感觉相关通道
-
RYR通道
-
CAMPKII: CA2+/calmodulin-dependent protein kinase II
-
CAM: calmodulin target proteins
- calmodulin:钙调蛋白
-
BAPTA/EGTA: 敖合钙离子,BAPRA速率更高
-
synaptotagmin:Ca2+ sensor that triggers exocytosis
-
Ca2+ clear
-
Neuronal Ca2+
-
Astrocyte Ca2+
Nuclear calcium signaling
- Ca2+ promotes migration of transcription factors or transcriptional regulators to the nucleus
- DREAMsystem
Ca2+ wave
- Ca 信号的传播
- Ca促进ER释放Ca
Ca2+ indicator
- Bioluminesceny protein
- chemical calcium indicator
- 亮度和Ca2+浓度有关
- FRET-based sensors
- Ca2+升高–>CAM构象改变–>CFP能量转移激发YFP
- genetically encoded calcium indicator
- Fura-2AM
- GCaMP
- CAM-M13-GFP
值的含义
6 Synaptic Plasticity Learning and Memory
- Postsynaptic density (PSD)
- 突触的量子释放理论
Long-term potentiation (LTP) 长时程增强
-
Model for Hebbian theory
-
LTP in hippocampus
- early/late phase LTP
-
LTP is pathway specific 专一性
-
associativity of synaptic LTP
- 2个弱刺激点联合刺激,可能激发单个强刺激所无法激活的LTP
-
reduced failures after LTP
-
激活失败的概率降低,大电流下降,效率提高
-
induction of LTP
- silent synapse model:AMPA and NMDA
- 大量Ca的进入是激活LTP的初始条件–>NMDA的开放很重要
-
Post-synaptic active CaMKII causes an LTP-like effect
-
LTP and behavior
- 水迷宫与空间记忆 Morris maze
-
Short-term plasticity
Long-term Depression (LTD)
- various forms of LTD
- homosynaptic
- heterosynaptic
- associative LTD
- cerebellar LTD
Learning and Memory
- Cell assembly
- H.M. 病人:海马是新记忆产生的起点
- 海马和空间记忆
7 Generation of Neural Network and Regeneration
神经发育
- How do individual neurons differentiate and connect with their partners?
- How do groups of neurons wire in a coordinated manner to form a functional circuit, such as a neural map?
Neural tube genesis
The vertebrate nervous system derives from the neural tube, an ectodermal structure. Extrinsic morphogens and intrinsic transcription factors pattern the neural tube differentiation.
-
neural plate –> neural fold –> neural tube –> spinal cord
-
Bone morphogenetic proteins (BMPs) signaling
- suppressors of neuronal differentiation
-
Wnt signaling
- Response:
- cells in anterior express Otx2 –> forebrain, midbrain
- cells in posterior express Gbx2 –> hindbrain
- Response:
Neural stem cells
-
Ref: Annu. Rev. Neurosci. 32: 149–84 (2009)
-
Asymmetric division (进行非对称型分裂):progenitor cell–> (a) self–renewal (b) neuron/glia
- neuronal progenitor –> neuron
- glial progenitor –> astrocyte, oligodendrocyte
-
Reason of asymmetric division: the distributino of cell constituents in precusor cells. The protein notch-1 and numb are differentially distributed in the precursor cells of the developing neucortex.
- vertical cleavage (asymmetric) v.s. horizonatal cleavage (symmetric)
-
Notch–delta mediated lateral inhibitation diverfsifies cell fates
Neuron migration
-
Radial glial cells
- neurons migrate along radial glial cells (radial migration)
-
Inside–out pattern of neuronal migration
- 早期产生的神经元位于皮层最内侧
- 晚期产生的神经元越过早期神经元到达皮层最外侧
-
GABAergic neurons(interneurons): tangential migration (切向迁移)
- after migration: random walk
-
成年期海马的神经发生是比较稀少的
Morphogens and transcription factors specify spinal cord neuronal fates
The nervous system has a rough blueprint that specifies the numbers and types of neurons at specific locations.
-
Ref: New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? 10.1038/nrn2822
-
转录因子在神经细胞发育早期高表达
-
Dorsal/ventral targeting
-
Neuronal growth cone
-
Event: crossing the midline 脊髓发育中的重要事件
- 跨过脊髓中线进行投射
-
Neural survival: neurotrophic factor hypothesis 神经营养因子
- NGF: nerve growth factor
- BDNF: brain derived neurotrophic factor
- interacts with a different transmembrane Trk
-
Multiple cue-receptor systems guide axons to their final destinaations. 指示轴突到达正确的投射位置
Key steps in brain wiring
Synapse formation & elimination
- 突触修剪:Some neuromuscular synapses are eliminated after birth
- Axon pruning
- primary axon extension –> interstitial axon branching –> selective axon elimination
- Signaling from surrounding glia
Self–avoidance of axonal and dendritic branches
- Dscam gene control
Repairing the damaged brain
-
axons in the periphery regenerate better than those in the central nervous system
-
peripheral and central nerves differ in their ability to support axonal regeneration
- 外周神经系统比中枢神经系统有更好的损伤修复能力
-
myelin and glial scar components inhibit regeneration of central axons
-
using sources of neuronal cells with reprogramming and transplantation
8 Brain Circuit and Brain Disorders
History
- Localization of function in the brain
- Broca area
- Golgi: staining, 网状学说
- Cajal: neuron doctrine 神经元学说
Neural Circuit
- What is neural circuit?
- Examples of neural circuit
- Two classes of neurons in neocortex: glutamatergic and GABAergic
- interneuron diversity
- three non-overlapping GABAergic interneuron
- PA,sSA,
Construction
-
Feedforward inhibition (FFI, 前馈抑制神经环路)
- 兴奋性传入,一段时间后抑制性传入主神经元–> narraw time-window
-
Feedback inhibition (FBI)
- 兴奋性传入, 抑制周边兴奋性神经元(侧抑制)
-
Disinhibitory: 兴奋性传入,抑制下游抑制性神经元
- Disinhibitory microcircuit
-
行为学范式:auditory fear conditioning
Neural disorders
pass~
Questions
-
how is the inside-out patch used in the in-vitro experiment?
-
Prepulse?
-
有没有被验证?
-
电流钳和电压得到的电流曲线是相反的?
-
Glu –> Astrocyte 耗能?
- 让星胶去耗能
-
what is the floor plate in spinal cord?
-
什么是受体的同/异聚体?为什么NMDA只有异聚体?
- Oligomeric proteins may be composed either exclusively of several copies of identical polypeptide chains, in which case they are termed homo-oligomers, or alternatively by at least one copy of different polypeptide chains (hetero-oligomers).
-
什么是IPSC电流?
-
What is cAMP?
-
VIP neurons, PV neurons
idea
- Cell式的Notes风格
- 有重点地讲
- 关注抽象生物名词
- e.g., plasticity
- 文献研讨:注意作者调研和课题背景